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ABSTRACT

Mesoporous materials of chromium doped
 
titanium dioxide (Cr-doped TiO

2
) and

undoped TiO
2
 were prepared by hot-injection reflux technique at 150 °C for 6 hours.

Samples Cr-doped TiO
2
 at different percentages: 1.1, 3.9 and 4.4 (wt% Cr) and undoped

TiO
2
 were synthesized from Ti(O

2
)O.2H

2
O as titanium source obtained from the reaction of

TiCl
4
 and H

2
O

2
. Solid (NH

4
)

2
CrO

4
 was a source of chromium as dopant. The prepared

materials were characterized using powder X-ray diffraction (PXRD), scanning electron
microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and N

2
 adsorption-desorption

isotherm. The XRD results reveal that the undoped TiO
2
 is composed of  well-crystalline

anatase (major), rutile (minor) and brookite (minor) phases. In the 1.1.wt% Cr-doped TiO
2
,

its phase composition is anatase (major) and rutile (minor). The chromium dioxide (CrO
2
),

anatase (major), brookite and srilankite (TiO
2
-II) are present in the 3.9 wt% Cr-doped TiO

2

and the 4.4 wt% Cr-doped TiO
2
. All prepared materials (Cr-doped TiO

2
 and undoped TiO

2
)

exhibit mesoporous of  type-IV isotherm curves with H2-type hysteresis loop according to
the IUPAC classication. The Brunauer-Emmett-Teller (BET) specific surface area (S

BET
)

and the mean pore size of the 4.4 wt% Cr-doped TiO
2
 exhibit a maximum surface area of

111 m2/g, corresponding to mean porous size of 4.95 nm. The hydrophilic properties of
Cr-doped TiO

2
 were investigated with illumination of UV light. All prepared samples shows

excellent superhydrophilic properties. The 4.4 wt% Cr-doped TiO
2
 demonstrates the most

excellent superhydrophilic properties as compared with the other samples. These results allow
the materials to be prospective application as antifogging.

Keywords: titanium dioxide, Cr-doped TiO
2
, mesoporous, superhydrophilic, antifogging
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1. INTRODUCTION

Among the various semiconductors,
titanium dioxide (TiO

2
) has been well known

as an efficient phtocatalyst. This is because
TiO

2
 has the most efficient photoactivity, high

refractive index, light absorption, non-toxicity,
high chemical stability and relatively
low-cost production [1]. When irradiated
with ultraviolet or sun light on a TiO

2
 surface,

two phenomena of photochemical reaction
will happen: the first is the photo-induced
redox reactions, and the other is the photo-
induced super-hydrophilic conversion.
When the surface of TiO

2
 was irradiated with

light consisting of wavelengths shorter than
its band gap, about 3.0-3.2 eV, electron and
hole pairs are generated in the TiO

2
, and they

reduce and oxidize adsorbates on the surface,
generating radical species such as ×O

2
 and

×OH. Super-hydrophilic surfaces and
reduction reactions at the surface of TiO

2
 are

a broad research field covering such as water
cleaning [2], photo-electrochemical splitting
of water [3], solar cells [4], self-cleaning [5],
antifogging [6], anti-bacterial surface coatings
[7], and photocatalyst [8]. Various applications
of self-cleaning TiO

2
 films have been

proposed especially for practical applications
such as window glasses, mirrors and
windshields of automobile [9].

The performances and the properties of
TiO

2
 are strongly influenced by crystalline

structure, morphology, surface states,
size pore, dopant and size of the particles
phase [10,11]. For TiO

2
 photoinduced

super-hydrophilicity, the main efforts have
been made in two aspects: one is to narrow
the wide bandgap to extend the spectral
response of TiO

2
 to the visible region for

the efficient utilization of  the energy from the
sun. Another is to reduce the recombination
rate of photogenerated electron-hole pairs to
enhance efficiency of  photolysis. Many efforts
have been made to achieve the utilization of

visible light for TiO
2
 material, such as

transitional metal ion doping [12, 13, 14],
non-metal element doping [15, 16] and dye
sensitization [17].

In the present study, a series various %wt
Cr-doped TiO

2
 and undoped TiO

2
 have been

successfully synthesized using a hot-injection
reflux technique. The major goal were to
synthesize and characterize undoped TiO

2

and  a series various %wt chromium-doped
TiO

2
 and to investigate its photoinduced

super-hydrophilic properties for antifogging
materials.

2. MATERIALS AND METHODS

2.1 Materials
Ammonium hydroxide (NH

4
OH,

28-30% NH
3
) solution, hydrogen peroxide

solution (H
2
O

2
, 10 wt% in H

2
O), ammonium

chromate (NH
4
)

2
CrO

4
, 99%), titanium (IV)

chloride (TiCl
4
, 99%) were purchased from

Sigma-Aldrich. All the reagents were used
without further purification. Titanium dioxide
hydrate was obtained from the reaction of
TiCl

4
 and H

2
O

2
 [18]. In a particular procedure,

15 ml TiCl
4
 was added into a 500 ml glass

flask loaded in an icewaterbath, then 30 ml
of H

2
O

2
 was added slowly into the reaction

vessel under magnetic stirring. The precipitate
was filtered, washed with distilled water and
dried at 100 °C for 5 hours.

2.2 Sample Preparation
A series of chromium doped TiO

2
 at

various %wt Cr were prepared by a reflux
technique. In a particular procedure, 10 g
of titanium dioxide hydrate was dissolved
in 50 ml of distilled water under vigorous
stirring and was stirred for 4 hours to obtain
colloid labeled P. For studying the effect
of the (NH

4
)

2
CrO

4 
concentration, in a

separated beaker 0, 3, 6 and 9 wt% Cr-doped
TiO

2
 respectively were adopted. It was
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dissolved in 20 mL of distilled water
thoroughly under vigorous stirring to obtain
solutions labeled Q

1
, Q

2
, Q

3
, and Q

4

respectively. Each solution Q
1
, Q

2
, Q

3
, and

Q
4
 was then slowly added to each solution P.

The solution mixture was heated at 150 °C
with a magnetic stirrer in equipment reflux,
added dropwise NH

4
OH until pH to about

8-10 within about 10 minutes. The solution
mixture was refluxed at 150 °C for 6 hours.
The precipitate was filtered, washed with
distilled water and dried at 70 °C for
3 hours. Furthermore, the precipitate was
calcined at 600 °C for 2 hours.

2.3 Physical Measurements of Samples
The morphologies of the prepared

materials were observed by a scanning
electron microscope (Phenom ProX Desktop
SEM) equipped energy dispersive X-ray
spectroscopy (EDS). Sample surface was
observed and the images were recorded.
EDS was used to analyze the presence of Ti,
and O elements in the TiO

2
 and the presence

of Ti,  Cr, and O elements in the Cr-doped
TiO

2
.
The powder XRD patterns of  prepared

materials were collected using a Rigaku
Miniflex 600-Benchtop X-ray diffractometer,
operating in the Bragg configuration using
Cu Kα radiation (λ = 1.5406 ) at a tube
current of  15 mA and a voltage of  40 kV.
Data were collected over 2q values from
2 - 90°. The measurements were recorded in
steps of 0.02° with a count time of 5 s/step
at room temperature 25 °C. The qualitative
analysis was carried out with the identification
of a phase or phases in the samples by
comparison with “standard” patterns: COD
and ICDD. The average crystallite size of
anatase and rutile were calculated based on
XRD peak broadening using the basic
Scherrer formula (Eq. (1)) [19], which is then
modified and written as Eq. (2). It is modified

by making logarithm on both sides:

β =          =       -                     ..... (1)

lnβ  = ln         = ln      + ln        ..... (2)

where L is the average crystallite size, β is
the peak width of the diffraction peak
profile at half maximum height (FWHM)
resulting from small crystallite size in radians
and K is a constant related to crystallite shape,
normally taken as 0.9, l is the wavelength of
the X-ray radiation (λ Kα(Cu) = 1.5406 nm)
and θ is the Bragg angle. If  we plot the
results of ln β against ln (1/cos qθ, then a
straight line with a slope of around one and
then an intercept of about ln K/L must be
obtained. The mean crystallite size of anatase
particle was estimated by analysing the
broadening of the (101), (004), (200), (211),
and (220), reflections. While the mean crystallite
size of rutile particle was estimated by
analysing the broadening of the (110), (101),
(111), (210), and (220), reflections. The average
crystallite size of brookite and srilankite
(TiO2

-II) were calculated based on XRD
peak broadening using the Scherrer Formula
(Eq.(1)).

Full adsorption-desorption isotherms
data of nitrogen at 77 K on all prepared
materials were collected at various partical
pressures in a Surface Area and Pore
Porosimetry Analyzer ASAP 2020 instrument
from Micromeritics. Before the BET/BJH
measurements, the prepared materials were
degassed at 150 °C under vacuum for 4 h
prior to analysis with a vacuum set point of
10 mmHg. The Brunauer-Emmett-Teller
(BET) specific surface data area (S

BET
)

was determined by a multipoint BET
method using the adsorption data in the
relative pressure (P/P0) of  0.30 [20]. The
pore size distribution was evaluated from
the adsorption-desorption branch of the

Lcosθ
Kλ

L
Kλ

cosθ
1

Lcosθ
Kλ

L
Kλ

cosθ
1
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isotherms by the procedure developed by
Barrett, Joyner and Halenda (BJH) [21]. The
nitrogen adsorption and desorption volume
at the relative pressure (P/P0) of  0.99 was
used to determine the pore volume and the
average pore size.

2.4 Study of Photoinduced
Superhydrophilic Properties

Ultraviolet-ray irradiated to the surface
of the prepared sample by commercial 20W

black light blue fluorescent light, and the
contact angle of water was measured every
2 minute.

3. RESULTS AND DISCUSSIONS

3.1 Scanning Electron Microscopy
(SEM)

Figure 1 show typical SEM images and
EDS analysis of TiO

2
 and Cr-doped TiO

2

nanoparticles.

Figure 1. SEM image (left), EDS analysis (middle) and weight percentage of Ti, O and Cr in
the prepared samples (right): (a) undoped TiO

2
, (b) 1.1 wt% Cr-doped TiO

2
, (c) 3.9 wt%

Cr-doped TiO
2
, and (d) 4.4 wt% Cr-doped TiO

2
.

SEM micrographs and EDS spectra of
TiO

2
 (Figure 1(a)) and 1.1., 3.9, and 4.4 wt%

Cr-doped TiO
2
 (Figure 1(b-d)) prepared by

reflux technique show the formation of
aggregated secondary particles by the
agglomeration of  primary particles. On the
theoretical basis, addition of each: 3, 6 and
9 wt% Cr-doped TiO

2
 should produce

experimentally only 1.1, 3.9 and 4.4 wt%

Cr-doped TiO
2
,
 
respectively. The EDS

analysis reveals the presence of Ti and O
elements in TiO

2
 and the presence of Ti,

Cr and O elements in various wt% Cr-doped
TiO

2
.

3.2 X-ray Diffraction (XRD)
Figure 2 represents the XRD patterns

of  undoped TiO
2
 and Cr-doped TiO

2
.
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The undoped TiO
2
 shows that anatase (major),

rutile (minor) and brookite (minor) forms are
obtained by reflux technique.

Figure 2. PXRD pattern of the prepared
samples: (a). undoped TiO

2
, (b). 1.1 wt% Cr-

doped TiO
2
, (c). 3.9 wt% Cr-doped TiO

2
, and

(d). 4.4 wt% Cr-doped TiO
2
.

From the XRD pattern (Figure 2(a)), the
peak position at 2q = 25.36�, 37.84�, 48.11�,
54.38�, 55.07�, and 62.88� are indexed as the
(101), (103), (200), (105), (211), and (213)
reflections of crystalline anatase phase,
corresponding to those shown in the ICDD
card No. 00-021-1272. The other diffraction
peaks are observed 2q = 27.53�, 36.14�,
39.24�, 41.32�, and 54.38� are indexed as the
(110), (101), (200), (111), and (211) reflections
of crystalline rutile phase, corresponding to
those shown in the COD card No. 9004141.
The three distinct diffraction peaks are clearly
observed at 2q = 25.36�, 30.95�, and 39.24�
being assigned to (210), (211), and (400)
reflections of  brookite phase, respectively,
corresponding to those shown in the
ICDD card No. 00-016-0617. In the 1.1.wt%
Cr-doped TiO

2
, its phase composition

are anatase (major) and rutile (minor).
The chromium oxide (CrO

2
), anatase (major),

brookite and srilankite (TiO
2
-II) are present

in the 3.9 wt% Cr-doped TiO
2
 and the

4.4 wt% Cr-doped TiO
2
.

The phase composition, the average
crystallite sizes (L) of the phases in undoped
TiO

2
 and Cr-doped TiO

2 
are given in

Table 1. It is clear that the crystallite size of
anatase decreases (114.09-110.17 nm) with
increasing the molar of doping agent (Cr).
The crystallite size of anatase and rutile increase
with the presence of doping agent (Cr).

3.3 N
2
 Adsorption-Desorption Isotherm

To investigate the pore size distribution
and adsorption properties of undoped TiO

2

and various wt% Cr-doped TiO
2
, N

2

adsorption-desorption isothermal tests were
carried out using BET-BJH method, and their
isotherm curves were presented in Figure 3.
In all prepared materials, it can be observed
that the powder exhibits the classical shape
of  type-IV isotherm curves with H2-type
hysteresis loop according to the IUPAC
classication [22, 23]. Their narrow hysteresis
loops exhibit a typical pattern of  Type IV
at a relative pressure from 0.68 to 0.98
(undoped TiO2

), 0.60 to 0.92 (1.1 wt% Cr-
doped TiO

2
), 0.42 to 0.92 (3.3 wt% Cr-doped

TiO
2
) and 0.45 to 0.90 (4.4 wt% Cr-doped

TiO
2
), indicating that the prepared materials

have characteristic of a material that contains
mesoporosity and has a high energy of
adsorption. In addition, the hysteresis loops
for these materials are H2 which means that
the material is often associated pores with
narrow and wide sections and possible
interconnecting channels.

The pore size distribution of undoped
TiO2

 and various wt% Cr-doped TiO
2

depicted in Figure 4 (inset) show a porosity
in the range of 4.95-12.16 nm. The surface
area, volume and pore size distribution of
the prepared materials (Cr-doped TiO

2
 and

undoped TiO
2
)

 
have been summarized in

Table 2.



Chiang Mai J. Sci. 2017; 44(3) 1061

Table 1. Phase and crystallite size of  undoped TiO
2
 and Cr-doped TiO

2
.

*) The phase composition was determined by qualitative analysis (“standard” patterns: COD and ICDD)
**) The average crystallite size of anatse and rutile were calculated by Modified Debye-Scherrer formula, while for
CrO2, brookite and srilankite were calculated by Debye-Scherrer formula

Sample

Undoped TiO
2

1.1 wt% Cr-doped TiO
2

3.9 wt% Cr-doped TiO
2

4.4 wt% Cr-doped TiO
2

Phase*)

Anatase

Rutile

Brookite

Anatase

Rutile

Anatase

Brookite

CrO
2

TiO
2
-II

Anatase

Brookite

CrO
2

TiO
2
-II

Hkl
(101)
(004)
(200)
(211)
(220)
(110)
(101)
(111)
(210)
(220)
(211)
(101)
(004)
(200)
(211)
(220)
(110)
(101)
(111)
(101)
(004)
(200)
(211)
(220)
(211)
(011)
(110)
(020)
(111)
(101)
(004)
(200)
(211)
(220)
(211)
(011)
(110)
(020)
(111)

2θ (°)
25.36
37.84
48.11
55.07
70.34
27.53
36.14
41.32
44.13
56.63
30.95
25.29
37.75
48.00
55.12
70.18
27.45
36.05
41.24
25.31
37.92
48.01
55.03
70.15
31.13
27.11
28.40
40.56
29.62
25.33
37.83
48.01
55.06
70.11
31.29
27.06
28.39
40.43
29.53

d ( )
3.509
2.376
1.889
1.666
1.337
3.237
2.483
2.183
2.050
1.624
2.887
3.519
2.381
1.894
1.665
1.340
3.247
2.489
2.187
3.516
2.371
1.894
1.667
1.341
2.870
3.287
3.139
2.222
3.013
3.513
2.377
1.894
1.667
1.341
2.8567
3.292
3.141
2.229
3.022

FWHM 2θ (deg)
0.42
0.43
0.47
0.47
0.50
0.25
0.29
0.24
0.26
0.29
0.67
0.72
0.74
0.70
0.49
0.86
0.47
0.52
0.51
0.73
0.76
0.77
0.79
0.84
0.28
0.18
0.10
0.19
0.44
0.72
0.74
0.76
0.80
0.84
0.12
0.11
0.20
0.23
0.39

L **) (nm)

193.84

323.83

122.99

114.09

178.04

110.17

294.42

572.86

186.69

112.59

687.24

506.69

210.58
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Table 2. Surface area, volume and pore size distribution of  Cr-doped TiO
2 

and undoped
TiO

2
 from Nitrogen Adsorption-desorption Isotherm Measurements.

Sample

Undoped TiO
2

1.1 wt% Cr-doped TiO
2

3.9 wt% Cr-doped TiO
2

4.4 wt% Cr-doped TiO
2

Surface Area BET
(S

BET
) (m2/g)
33
65
30
111

Pore Volume at P/P
o

≈ 0.99 (cm3/g)
0.1168
0.1658
0.0591
0.1612

Pore Size
(nm)
12.16
8.01
6.88
4.95

The BET surface area and the mean
pore size of the 4.4 wt% Cr-doped TiO

2

exhibit a maximum surface area of 111
m2/g, corresponding to mean porous size
of  4.95 nm. The pore size distribution curve
calculated from the desorption branch of

the isotherm BJH analyses shows that the
undoped TiO

2
 exhibits pore size of 12.16 nm

and the 1.1, 3.9, and 4.4 wt% Cr-doped
TiO

2
) exhibit pore sizes of 8.01, 6.88, and

4.95 nm (inset Figure 3), respectively.

Figure 3. Nitrogen adsorption-desorption isotherms of  the prepared samples: (a) undoped
TiO

2
, (b) 1.1 wt% Cr-doped TiO

2
, (c) 3.9 wt% Cr-doped TiO

2
, and (d) 4.4 wt% Cr-doped

TiO
2 
(inset of  pore size distribution from the adsorption branch of  isotherm).
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3.4 The Contact Angle Changes of  Water
on the Cr-doped TiO

2 
Surface Irradiated

by Ultra-Violet (UV) Light
Figure 4 shows diagram of the change

of contact angles of water dropped on the
UV-iradiated undoped TiO

2
 and Cr doped

TiO
2
 films. The contact angle of  water on the

prepared samples surfaces can be altered by
UV irradiation.

From the diagram in Figure 4, it can be
seen that the 4.4 wt% Cr-doped TiO

2
 has

the most excellent superhydrophilic
properties as compared with other samples.
The phenomena after UV irradiation for
40 minutes are as follows:

-Undoped TiO
2
, irradiation with UV light

inducing a decrease in contact angle from
about 46.93° to 25.51°.

- 1.1 wt% Cr-doped TiO
2
, irradiation

with UV light inducing a decrease in contact
angle from about 46.48° to 24.52°.

- 3.9 wt% Cr-doped TiO
2
, irradiation

with UV light inducing a decrease in contact
angle from about 44.84° to 22.38°.

- 4.4 wt% Cr-doped TiO
2
, irradiation

with UV light inducing a decrease in contact
angle from about 46.12° to 19.04°.

Figure 4. Change of the contact angles for
film of glass support, undoped TiO

2
, 1.1 wt%

Cr-doped TiO
2
, 3.9 wt% Cr-doped TiO

2
, and

4.4 wt% Cr-doped TiO
2
 with UV irradiation.

4. CONCLUSIONS

A various wt% chromium-doped TiO
2

(Cr-doped TiO
2
) and undoped TiO

2
 have

been successfully synthesized by hot-injection
reflux technique. The prepared samples
consist of anatase (major), rutile (minor),
chromium oxide (CrO

2
) (minor), brookite

(minor) and srilankite (TiO
2
-II) (minor) type

structures. In the 1.1.wt% Cr-doped TiO
2
,

its phase composition is anatase (major) and
rutile (minor). The CrO

2
, anatase, brookite and

srilankite (TiO
2
-II) are present in the 3.9 wt%

Cr-doped TiO
2
 and the 4.4 wt% Cr-doped

TiO
2
. The BET surface area and the mean

pore size of the 4.4 wt% Cr-doped TiO
2

exhibit a maximum surface area of 111
m2/g, corresponding to mean porous size of
4.95 nm. All prepared materials (Cr-doped
TiO

2
 and undoped TiO

2
) exhibit mesoporous

of  type-IV isotherm curves with H2-type
hysteresis loop according to the IUPAC
classication. The hydrophilic properties of
Cr-doped TiO

2
 were investigated with

illumination of UV light, and all prepared
samples show excellent super-hydrophilic
properties, and the 4.4 wt% Cr-doped TiO

2

exhibits the most excellent superhydrophilic
properties as compared with other samples.
These results allow the materials to be
prospective application as antifogging.
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